ABSTRACT

This bulletin presents data on liquid-vapor phase equilibria, gas phase pressure-volume-temperature relationships, and saturated liquid and vapor densities for the ethane-nitrogen system, obtained by detailed experimental investigation with specific mixtures of ethane and nitrogen.

The liquid-vapor phase equilibrium data were determined by study of the dew and bubble point pressure-temperature relations of ten mixtures of ethane and nitrogen. During experimental runs the mixture was confined in a heavy-walled glass cell immersed in a cryostat, and stirred by a magnetically-raised and lowered steel ball. Dew and bubble points were determined by direct visual observation, and the critical region of the mixture was carefully noted if critical conditions were within the operating limits of the equipment. The range covered was from 50 to 1950 psia, and -297° to $+90^{\circ}$ F, the critical temperature of ethane. It was not possible to determine the highest pressure at which liquid and vapor can coexist, due to equipment limitations.

Pressure-temperature, temperature-composition and pressure-composition diagrams were prepared from the dew and bubble point data. Equilibrium vaporization ratios were determined from these diagrams, and are presented in graphical and tabular form. It is estimated that the phase equilibrium data are reliable to ± 2 psi or $\pm 0.2^{\circ}$ F, whichever is greater.

The gas-phase pressure-volume-temperature data were determined by a study of the pressure-temperature relations of five mixtures of ethane and nitrogen at constant density. Seven or eight constant density lines (isometrics) were investigated for each mixture. The data, covering the range from the critical region to $+110^{\circ}$ F and pressures to 4000 psia, are presented in plots of compressibility factor versus pressure, with lines of constant temperature. Compressibility factors calculated from the data are believed accurate to $\pm 0.3\%$.

The experimental compressibility factors have been compared with values calculated with the Benedict-Webb-Rubin equation of state, the constants for the mixtures being obtained by combining the constants for ethane and nitrogen. An empirical combination rule for the A_o term was used to adjust the method of combining constants and improve the agreement with the experimental data. A comparison of the experimental pressure-volume-temperature data with the data of Reamer *et al.*¹⁸ show good agreement, with a maximum deviation of about 1.2%.

TABLE OF CONTENTS

THE	PROBLEM	1	
SUMMARY OF RESULTS			
I.	Liquid-Vapor Phase Equilibrium Data	2	
	A. Dew and Bubble Points	2	
	B. Pressure-Composition Diagrams	3	
	C. Temperature-Composition Diagrams	4	
II.	Critical Data for the Ethane-Nitrogen System	10	
III.	Partial Miscibility in the Liquid Phase	11	
IV.	Single and Double Retrograde Phenom- ena	11	
v.	Gas Phase Pressure-Volume-Tempera- ture Data	12	
VI.	Saturated Liquid and Vapor Density Data	15	
DISCUSSION			
I.	Estimated Accuracy of the Data	16	
	A. Dew and Bubble Point Data	16	
	B. P-V-T Data	16	
	C. Internal Consistency of the Data	16	
II.	Phase Equilibria	17	
	A. Phase Rule	17	
	B. Application of the Phase Rule to Bi- nary Systems	17	
	C. Liquid-Liquid Equilibria	17	
	D. Liquid-Liquid-Vapor Equilibria	18	
	1. Pressure-Composition Diagram	18	
	2. Temperature-Composition Dia- gram	19	
III.	Retrograde Behavior in the Ethane-Ni- trogen System	20	
	A. Isothermal Retrograde Condensation	20	
	B. Isobaric Retrograde Vaporization Be- tween Bubble Points	20	
	C. Isobaric Retrograde Vaporization Be- tween Dew Points	20	

D. Double Retrograde Condensation	21		
IV. Utility of the Data	21		
A. Liquid-Vapor Phase Equilibrium			
Data	21		
B. Gas Phase Pressure-Volume-Temper-	99		
V Comparison of ICT and Published Data	25		
v. Comparison of IG1 and Published Data .	21		
EQUIPMENT AND EXPERIMENTAL PROCEDURES			
I. Materials Used	28		
II. Dew and Bubble Point Apparatus	28		
A. Description of Apparatus	29		
1. Gas Measurement and Storage	29		
2. Equilibrium Cell	29		
3. Glass-to-Metal Connector	29		
4. Low-Temperature Bath	30		
5. Temperature and Pressure Meas-			
urement	30		
B. Experimental Procedures	31		
1. Preparation of Mixtures	31		
2. Operating Procedures	31		
III. Gas Phase P-V-T Apparatus	32		
A. Description of Apparatus	32		
B. Experimental Procedures	34		
1. Preparation of Mixtures	34		
2. Determination of Pressure-Vol-			
ume-Temperature Relationships .	34		
3. Expansion of Gas to the Low-Pres-			
sure System	35		
C. Calculation of Results	35		
Table L Daw and Rubble Point Experi			
mental Data for Ethane-Nitrogen			
Mixtures	36		
Table II. Experimental P-V-T Data and Com-			
puted Compressibility Factors for	90		
Etnane-Nitrogen Mixtures	38		
DEEEDENICES CITED 40			
REFERENCES CHED	40		